
CORBA, DCOP and DBUS. A performance comparison.

Abstract

For quite a while now I have been under the impression that the CORBA IPC/RPC mechanism used by
the GNOME desktop environment was bloated and slow. People have commented that the DCOP and
DBUS were speedier alternatives. I decided to put this supposition to the test by performing a simple set
of experiments. The results were a little surprising.

Introduction.

Remote procedure calls (RPC's) are function calls across process boundaries. In some cases these
function calls will in fact be between computers, login sessions or between processes running within the
one session. The common factor is that the calls are across the protection boundary maintained by the
operating system between processes. This process boundary prevents applications from simply calling a
function at a certain address within another process. The function call has to be “faked” in effect. The
calling process (client) has to generate a message perhaps containing a function identifier and optionally
some parameters and then send it to the other process (server). The server (which is presumed to be
listening for messages) receives this message, parses it, passes the parameters to the specified function
and returns a response message to the client. The exact mechanism by which message are sent varies
greatly.
From a programmer's perspective, calling a properly encapsulated remote procedure should be no
different to calling any other function. Inside the remote procedure call, messages will be exchanged
across process boundaries, but other than perhaps taking a little longer to execute, the programmer should
be unaware of any difference between a local and a remote procedure call. There are a range of
technologies applicable to the “remoting” of function calls in Linux. Broadly speaking they all conform
to the general form shown in Figure 1

Figure 1

A client process calls on a stub function whose job is to generate an IPC message containing any
parameters and some code to identify the remote function being sought. The stub also sends this message
to the server.
The server includes a skeleton interface function whose job it is to extract parameters from inbound
messages; route them to the correct function implementation (RPCFunc1Impl in Figure 1) and finally to
format a reply message containing any results.
The stub hides the remote nature of the function from the client programmer. The skeleton hides the
remote nature of the (service) function from the server programmer.

The different RPC technologies in Linux have different ways of formatting messages, locating servers,
loading servers and so on but the overall form is as described here. It is of course possible to create
custom message formats and to hand craft stubs and skeletons. There is however little to be gained from
such an approach as there are a number of “middleware” tools and libraries available that automatically
perform this function as well as providing additional support services.

CORBA, DCOP and DBUS

Gnome (GNu Object Model Environment) uses CORBA for message passing. Gnome's implementation
of CORBA primarily consists of an object request broker called ORBit and a component management
library called Bonobo. CORBA is a well established inter object communications protocol standard
maintained by the Object Management Group (OMG – see www.omg.org). There are many
implementations of the various versions of this protocol standard for a range of different platforms. The
basic goal however is to allow objects on different systems, developed in different languages to find and
communicate with one another. Servers make objects available for use by clients. The object interfaces
on a server are (usually) described using a special language used for describing object interfaces call
Interface Definition Language (IDL).
DCOP/KDE uses its own interface definition language which alas is not the same as that commonly used
for CORBA. It is similar to XML in structure. Finally DBUS uses XML to describe its client/server
interfaces.

Client

RPCFunc1Stub(1,3)

RPCFunc1Stub(arg1, arg2)

Server

RPCFunc1Skel()

RPCFunc1Impl(arg1, arg2)

“IDfunc1:1:3”

“4”

In-process
call

In-process
call

1

2

3 4

5

6 Inter-process
communications
messages

The test setup

The IDL file that describes the interface for the CORBA benchmarking test is as follows:

interface benchmarking {
 void void_call(); // simple call with no parameters or results.
 void in_int_call(in long InValue); // one integer parameter sent to server
 void out_int_call(out long OutValue); // one integer result received from server
 void in_out_int_call(inout long InOutValue); // integer exchange in both directions
 void in_string_call(in string InValue); // one string parameter sent to server
 void out_string_call(out string OutValue); // one string result received from server
 void in_out_string_call(inout string InOutValue); // string exchange in both directions
};

This interface is used to test the speed with which strings and integers are passed back and forth between
clients and servers.

The “kidl” file describing the DCOP interface is as follows:

<!DOCTYPE DCOP-IDL><DCOP-IDL>

<SOURCE> dcop_benchmarking_service.h </SOURCE>

<INCLUDE> qstringlist.h </INCLUDE>

<INCLUDE> qstring.h </INCLUDE>

<INCLUDE> dcopobject.h </INCLUDE>

<CLASS>

 <NAME> dcop_benchmarking_service </NAME>

 <SUPER> DCOPObject </SUPER>

 <FUNC>

 <TYPE> void </TYPE>

 <NAME> void_call </NAME>

 </FUNC>
 <FUNC>

 <TYPE> void </TYPE>

 <NAME> in_int_call </NAME>

 <ARG><TYPE> long int </TYPE><NAME> InValue </NAME></ARG>

 </FUNC>

 <FUNC>

 <TYPE>long int</TYPE>

 <NAME>out_int_call</NAME>

 </FUNC>
 <FUNC>

 <TYPE> long int </TYPE>

 <NAME> in_out_int_call </NAME>

 <ARG><TYPE> long int </TYPE><NAME> InValue </NAME></ARG>

 </FUNC>

 <FUNC>

 <TYPE> void </TYPE>

 <NAME> in_string_call </NAME>

 <ARG><TYPE> QString </TYPE><NAME> InValue </NAME></ARG>

 </FUNC>
 <FUNC>

 <TYPE> QString </TYPE>

 <NAME> out_string_call </NAME>

 </FUNC>
 <FUNC>

 <TYPE> QString </TYPE>

 <NAME> in_out_string_call </NAME>

 <ARG><TYPE> QString </TYPE><NAME> InValue </NAME></ARG>

 </FUNC>
</CLASS>
</DCOP-IDL>

The KDE/DCOP implementation differs from the GNOME/CORBA implementation in that Qstrings are
exchanged instead of the simpler “char *” types. This was done mainly because QStrings are the “more
native” string type for QT and KDE applications and in fact, they simplified the programming task.

The DBUS interface used for this benchmark test is described by the following:

<?xml version="1.0" encoding="UTF-8" ?>
<node name="/">
 <interface name="benchmarking.dbus.interface">
 <method name="void_call">
 </method>
 <method name="in_int_call">
 <arg type="i" name="arg1" direction="in" />
 </method>
 <method name="out_int_call">
 <arg type="i" name="result" direction="out" />
 </method>
 <method name="in_out_int_call">
 <arg type="i" name="arg1" direction="in" />
 <arg type="i" name="result" direction="out" />
 </method>
 <method name="in_string_call">
 <arg type="s" name="arg1" direction="in" />
 </method>
 <method name="out_string_call">
 <arg type="s" name="result" direction="out" />
 </method>
 <method name="in_out_string_call">
 <arg type="s" name="arg1" direction="in" />
 <arg type="s" name="result" direction="out" />
 </method>
 </interface>
</node>

Results

In order to get a reasonable averaging effect, the time to call each of the functions 10000 was measured.
The tests were carried out on the same system (Athlon XP 2800, 1GB RAM) running a copy of Fedora
Core 5. Table 1 lists the results.

Table 1.

Function CORBA execution time

(microseconds)

DCOP execution time

(microseconds)

DBUS execution time

(microseconds)

void_call 626480 1769354 9783550

in_int_call 629227 1859219 10469005

out_int_call 660020 1824046 10399278

in_out_int_call 686850 1903499 11162058

in_string_call 650098 1902107 10510298

out_string_call 730118 1870306 10455126

in_out_string_call 682283 1952853 11239133

Analysis

A number of conclusions can be drawn from this.
The type of data being sent has only a marginal effect on the execution time.
DCOP is approximately 3 times slower than CORBA
DBUS is approximately 18 times slower than CORBA

These results were far from what I had expected. Why are DCOP and DBUS so slow? The answer may
lie in the way that CORBA, DCOP and DBUS find particular functions on a server interface. DCOP and
DBUS locate the desired function by passing its signature (a text-description of the function) to the
remote server along with a block of data containing the parameters. CORBA on the other hand locates
the desired function using pointers and an index.

Further analysis on the in_out_int_call was performed. This call is chosen because of its relative
simplicity and because it exchanges data in both directions.

Note this further analysis was carried on a PC with the following specs:
Sempron 2600, 1GB RAM, Slackware 10.2 with Dropline Gnome.

DCOP analysis

The DCOP stub on the client-side is as follows:

long int dcop_benchmarking_service_stub::in_out_int_call(long int arg0)
{
 long int result = 0;
 if (!dcopClient()) {
 setStatus(CallFailed);

 return result;
 }
 QByteArray data, replyData;
 QCString replyType;
 QDataStream arg(data, IO_WriteOnly);
 arg << arg0;
 if (dcopClient()->call(app(), obj(), "in_out_int_call(long int)", data,

replyType, replyData)) {
 if (replyType == "long int") {
 QDataStream _reply_stream(replyData, IO_ReadOnly);
 _reply_stream >> result;
 setStatus(CallSucceeded);
 } else {
 callFailed();
 }
 } else {
 callFailed();
 }
 return result;
}

The following timings were observed:
Time to perform 10000 calls without modification : 2095730 microseconds
Time to perform 10000 calls with “if” block removed : 16651 microseconds
Time to perform 10000 calls with dcopClient()->call and no result processing : 2121165

From the above we can conclude that “dcopClient()->call” is the bottleneck. Delving into this a little it
seems that each time this function is called, the service target function is “looked up” i.e. there is no
caching of function id's/references.

DBUS Analysis.

The call to in_out_int_call is as follows:
dbus_g_proxy_call (proxy, "in_out_int_call",&error,G_TYPE_INT, arg1,
G_TYPE_INVALID,G_TYPE_INT,&result, G_TYPE_INVALID);

This represents a direct call to dbus i.e. There are no stubs involved. Again, as is the case with DCOP
there is a function lookup with no caching for subsequent calls.

CORBA analysis

The CORBA stub for in_out_int_call looks like this:
void benchmarking_in_out_int_call(benchmarking _obj,

CORBA_long* InOutValue,
CORBA_Environment *ev){

gpointer _args[1];
_args[0] = InOutValue;
ORBit_c_stub_invoke (_obj, // the corba object

&benchmarking__iinterface.methods,
// address of // relevant method table

3, // which method in that table
NULL, // return value
_args, // input arguments
NULL, // context
ev, // CORBA environment
benchmarking__classid, // unique class id

G_STRUCT_OFFSET (POA_benchmarking__epv, in_out_int_call),
(ORBitSmallSkeleton) _ORBIT_skel_small_benchmarking_in_out_int_call);

}

What may not be obvious from the above is that the target function is identified using pointers and an
index. There is no potentially costly lookup.

Is there an underlying transport issue? This is not apparently so because the three systems appear to be
based on unix stream sockets.

Conclusions.

The main conclusion from the above is as follows:
For repeated calls to a particular RPC function, the C bindings to the Orbit2 orb outperform calls using
the C++ bindings to DCOP and DBUS.

List of acronyms
CORBA Common Object Request Broker Architecture
DBUS Desktop Bus
DCOP Desktop Communications Protocol
IDL Interface Definition Language
IPC Inter process communication
GNOME GNu Object Model Environment
OMG Object Management Group
RPC Remote Procedure Call
XML Extensible Markup Language

	CORBA, DCOP and DBUS. A performance comparison.
	Abstract
	Introduction.
	CORBA, DCOP and DBUS
	The test setup
	Results
	DCOP analysis
	DBUS Analysis.
	CORBA analysis
	Conclusions.

